A comparison of the Extrapolated Successive Overrelaxation and the Preconditioned Simultaneous Displacement methods for augmented linear systems
نویسندگان
چکیده
In this paper we study the impact of two types of preconditioning on the numerical solution of large sparse augmented linear systems. The first preconditioning matrix is the lower triangular part whereas the second is the product of the lower triangular part with the upper triangular part of the augmented system’s coefficient matrix. For the first preconditioning matrix we form the Generalized Modified Extrapolated Successive Overrelaxation (GMESOR) method, whereas the second preconditioning matrix yields the Generalized Modified Preconditioned Simultaneous Displacement (GMPSD) method, which is an extrapolated form of the Symmetric Successive Overrelaxation method. We find sufficient conditions for each aforementioned iterative method to converge. In addition, we develop a geometric approach, for determining the optimum values of their parameters and corresponding spectral radii. It is shown that both iterative methods studied (GMESOR and GMPSD) attain the same rate of convergence. Numerical results confirm our theoretical expectations.
منابع مشابه
On the modified iterative methods for $M$-matrix linear systems
This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...
متن کاملGeneralized Iterative Methods for augmented linear systems ∗
In this paper we study the solution of large sparse augmented linear systems. The generalized modified extrapolated SOR (GMESOR) method is considered. We find sufficient conditions for GMESOR to converge and determine its optimal iteration parameters and the corresponding minimum value of its convergence factor. Under the assumption that the eigenvalues of a key matrix are real it is shown that...
متن کاملComparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems
Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...
متن کاملSome Results on Preconditioned Modified Accelerated Overrelaxation Method
In this paper, we present new preconditioned modified accelerated overrelaxation (MAOR) method for solving linear systems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned MAOR method converges faster than the MAOR method whenever the MAOR method is convergent. Finally, we give one numeric...
متن کاملIterative methods for the numerical solution of linear systems
The objective of this dissertation is the design and analysis of iterative methods for the numerical solution of large, sparse linear systems. This type of systems emerges from the discretization of Partial Differential Equations. Two special types of linear systems are studied. The first type deals with systems whose coefficient matrix is two cyclic whereas the second type studies the augmente...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 131 شماره
صفحات -
تاریخ انتشار 2015